SVG path bounding box: quadratic Bézier curves

TL;DR

SVG path bounding box for quadratic Bézier curves.

I guess that at this point the previous posts about Bézier curves start to make a little more sense (e.g. Extremes for Bézier curves), as they provide the essential maths for calculating the bounding box.

Without further ado, here’s the code:

 1 sub quadratic_bezier_bb ($P0, $P1, $P2) {
 2    my %retval = (min => {}, max => {});
 3    for my $axis (qw< x y >) {
 4       my ($p0, $p1, $p2) = map { $_->{$axis} } ($P0, $P1, $P2);
 5       my ($m_, $q_) = ($p0 - 2 * $p1 + $p2, -$p0 + $p1);
 6       my @candidates = (0, 1);
 7       if (abs($m_) > THRESHOLD) {
 8          my $t = -$q_ / $m_;
 9          push @candidates, $t if 0 <= $t && $t <= 1;
10       }
11       for my $pt (@candidates) {
12          my $mt = 1 - $pt;
13          my $v  = $mt**2 * $p0 + 2 * $pt * $mt * $p1 + $pt**2 * $p2;
14          $retval{min}{$axis} //= $retval{max}{$axis} //= $v;
15          if    ($v < $retval{min}{$axis}) { $retval{min}{$axis} = $v }
16          elsif ($v > $retval{max}{$axis}) { $retval{max}{$axis} = $v }
17       } ## end for my $pt (@candidates)
18    } ## end for my $axis (qw< x y >)
19    return \%retval;
20 } ## end sub quadratic_bezier_bb

The calculations are split across the X and Y axes (line 3). We first grab all relevant coordinate values (line 4) and calculate the associated parameters for the first derivative.

This derivative is a line, hence we calculate the usual parameters $m$ and $q$. Well, not exactly because we are neglecting a factor of $2$ from the relevant formula:

\[\begin{bmatrix} \mathbf{q} \\ \mathbf{m} \end{bmatrix} = \begin{bmatrix} q_x & q_y \\ m_x & m_y \end{bmatrix} = 2 \cdot \begin{bmatrix} - \mathbf{P}_1 + \mathbf{P}_2 \\ \mathbf{P}_1 - 2 \cdot \mathbf{P}_2 + \mathbf{P}_3 \end{bmatrix}\]

This is why the variables are named $m_ and $q_ - they’re not the real $m$ and $q$! But ignoring the $2$ is not of real harm here, because we eventually divide them (line 8) so the two $2$ would cancel out anyway.

Of course we consider the possible value of the parameter $t$ only if it’s within the allowed range $[0, 1]$ (line 9), then proceed to evaluate the Bézier quadratic curve for the axis (line 13) over all candidates, i.e. the range extremes and this possible candidate. The rest is all about keeping the maximum and minimum (lines 15 and 16).

The output format is compatible with what described in previous posts, so it can be used for merging with other bounding boxes as explained in SVG path bounding box: merge multiple boxes.

And I guess it’s everything for today!


Comments? Octodon, , GitHub, Reddit, or drop me a line!