TL;DR

Here we are with TASK #1 from The Weekly Challenge #172. Enjoy!

# The challenge

You are given two positive integers, $m and $n.

Write a script to find out the Prime Partition of the given number. No duplicates allowed.

For example,

Input: $m = 18,$n = 2
Output: 5, 13 or 7, 11

Input: $m = 19,$n = 3
Output: 3, 5, 11


# The questions

I mean, there would be so many questions that they donâ€™t make sense. I read this challenge as OK folks, hereâ€™s something to play with, have fun and donâ€™t annoy the neighbors!

Soooooâ€¦

• Iâ€™ll assume that $n$ is a target positive integer that we have to partition into the sum of distinct primes;
• Iâ€™ll assume that $m$ represents the number of primes that we have to use for this partition (the examples seem to support this);
• Iâ€™ll return a list (or an array) of $m$ primes or the empty list, in case the partition is not feasible;
• Iâ€™ll assume that no optimization is necessary and that the most simple solution is OK.

# The solution

The plan is to brush out the corner cases and use this:

• find all primes between $2$ and $n - 2$ and put them in an array;
• try out combinations of $m$ elements from the array:
• return the combination if its sum equals $n$;
• continue otherwise.

Raku goes first and provides batteries for most moving parts, leading to a very compact solution:

#!/usr/bin/env raku
use v6;
sub MAIN ($n = 18,$m = 2) { say prime-partition($n,$m) }

multi sub prime-partition ($n where *.is-prime, 1) { [$n ] }
multi sub prime-partition ($n, 1) { [] } multi sub prime-partition ($n, $m) { for (2 ..$n - 2).grep({.is-prime}).combinations($m) ->$c {
return $c.Array if$c.sum == $n; } return []; }  The multi subroutine allow us to cope with the case where$m = 1$, which boils down to checking whether$n$is prime or not. Otherwise we apply the algorithm laid out at the beginning of this section. On the Perl side thereâ€™s less out of the box, but with a little help here and there (e.g. from Combinations iterator) we get up to speed in little time: #!/usr/bin/env perl use v5.24; use warnings; use experimental 'signatures'; no warnings 'experimental::signatures'; use List::Util 'sum'; my$n = shift // 18;
my $m = shift // 2; say simple_stringify_array(prime_partition($n, $m)); sub simple_stringify_array (@a) { return '(' . join(', ', @a), ')' } sub prime_partition ($n, $m) { if ($m == 1) { return is_prime($n) ?$n : () }
my $cit = combinations_iterator($m, primes_within(2, $n - 2)); while (my ($c) = $cit->()) { return$c->@* if $n == sum$c->@*;
}
return;
}

sub combinations_iterator ($k, @items) { my @indexes = (0 .. ($k - 1));
my $n = @items; return sub { return unless @indexes; my (@combination, @remaining); my$j = 0;
for my $i (0 .. ($n - 1)) {
if ($j <$k && $i ==$indexes[$j]) { push @combination,$items[$i]; ++$j;
}
else {
push @remaining, $items[$i];
}
}
for my $incc (reverse(-1, 0 .. ($k - 1))) {
if ($incc < 0) { @indexes = (); # finished! } elsif ((my$v = $indexes[$incc]) < $incc -$k + $n) {$indexes[$_] = ++$v for $incc .. ($k - 1);
last;
}
}
return (\@combination, \@remaining);
}
}

sub primes_within ($min,$max) {
my @retval = $min < 3 ? 2 : ();$min++ unless $min % 2; while ($min <= $max) { push @retval,$min if is_prime($min);$min += 2;
}
return @retval;
}

sub is_prime { # https://en.wikipedia.org/wiki/Primality_test
return if $_[0] < 2; return 1 if$_[0] <= 3;
return unless ($_[0] % 2) && ($_[0] % 3);
for (my $i = 6 - 1;$i * $i <=$_[0]; $i += 6) { return unless ($_[0] % $i) && ($_[0] % (\$i + 2));
}
return 1;
}


Wellâ€¦ stay safe people!

Comments? Octodon, , GitHub, Reddit, or drop me a line!